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An algorithm which brings together the techniques of multigrid and deferred i-orrection 
through their common relationship with imperfect Newton iteration manages to combine the 
ease of calculation of a low-order with the accuracy of a high-order difierence approximation 
of any given differential-equation problem. A stable explicit Gauss-Seidel relaxation algorithm 
for the IJ-~ Navier-Stokes equations based on an appropriate kind of “upwinding” of $- as 
wel! a.s ,-derivatives. especially developed for use as a muitigrid smoother in t’nts coniel?. ts 

presented and the complete algorithm is tested on the standard conservative second-order 
discretization of the driven-cavity problem. I 1991 Acsdax Prrii. inc. 

1. INTRODUCTION 

The numerical solution of a set of differential equations is composed of two 
phases: the discretization of the original problem, that is. the identification of a new 
problem in a finite number of unknowns that is, in a suitable sense, an approxima- 
tion of the problem originally posed in a continuous variable space, and the solu- 
tion, which is in turn generally approximate, of the discretized prob!em. Several 
techniques are in use both for the discretization of the problem {e.g., difference 
approximations based on Taylor expansions or splines, finite elements, boundary- 
integral methods, spectral methods) and for the solution, necessarily iterative when 
the equations are nonlinear, of the discretized problem (e.g.? variationai methods, 
Newton iteration with direct inversion of the derix:ative matrix, and Gauss-Seidel, 
ADI, and multigrid relaxation methods). 

The method of solution is hardly ever studied separately from the technique of 
discretization but they are, indeed, distinct aspects of the problem, since t 
involves finding as accurate as possible a discrete approximation of the given 
differential equations whereas the former involves finding a rough approximation of 
their solution that may be fast to compute and just good enough to yield a stable 
feedback loop. 

This observation is at the basis of deferred-correction techniques, which consist 
of combining an accurate discretization of the given problem with an iterative solu- 
tion method devised for a lower-order approximation in such a way as to solve the 
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former through the latter. In particular, a perfect candidate for the lower-order 
solution algorithm is one based on the multigrid approach, as will be illustrated in 
the next section. A computer code designed on these principles keeps the two 
aspects of accuracy and speed of execution separate down to program structure, 
and allows an efficient solution method to be applied to a wide range of finite- 
difference and finite-element discretizations by replacing a single subroutine which 
basically contains the discretized equations only. As a side-effect of this separation 
of functions, the speed of execution becomes more or less independent of the form 
of the discretized equations, thus making complicated and previously unaffordable 
high-order formulations very appealing. 

A multigrid algorithm needs an underlying relaxation procedure to be used as a 
“smoother.” The degrees of freedom offered by the separation between the form of 
the discretized equations which is finally solved and the one which is used inside 
the relaxation algorithm has allowed us to taylor this form to the needs of 
the smoother. Rather than adopting a pre-existing solution procedure of the 
Navier-Stokes equations as a smoother, as done in most previous multigrid codes, 
we have developed an ad hoc first-order discretization, based on a suitable 
“upwinding” of I,& as well as i-derivatives in the vorticity-transport equation, which 
would be of little use as a stand-alone algorithm but is very well suited as a 
multigrid smoother because it makes a Gauss-Seidel relaxation loop stable at all 
Reynolds numbers. 

The plan of the paper is as follows. In Section 2 we shall illustrate a similarity 
between the deferred-correction and multigrid approaches which gives a hint that 
they should work well together in a combined method. In Section 3 we shall 
describe the resulting general method. which turns out to be similar to those 
developed in [l-4]. In Section 4 we shall present the new discretization of the $-; 
Navier-Stokes equations which lends itself to Gauss-Seidel relaxation and was 
expressly devised for the multigrid environment; and in Section 5 we shall give some 
results of applying the proposed algorithm to the well-known driven-cavity test case. 

2. THE CONNECTION BETWEEN DEFERRED CORRECTION AND MULTIGRID: 
IMPERFECT NEWTON ITERATION 

Before describing the more practical advantages of bringing together the techni- 
ques of deferred correction (also called “defect correction”) and multigrid into a 
combined algorithm, let us point out a philosophical reason to do so: they can both 
be seen as instances of a single technique which may be called imperfect Newton 
iteration. 

Basically all the existing methods for the numerical solution of differential equa- 
tions were initially developed for linear boundary-value problems and consist of 
algorithms for the inversion of matrices of a more or less specialized form. The 
extension of these techniques to nonlinear boundary-value problems is always 
explicitly or implicitly based on Newton iteration. (With one important exception: 



DCMG ALGORITHM FOR N-S EQUATIONS 35: 

variational procedures based on the minimization of a convex functional. A convex 

functional which is minimized by the solution, however, is not available for 28 
problems and in particular not for the Navier-Stokes equations.) 

Newton iteration is the well-known technique according to which the solutioc of 
a nonlinear equation system NL(x) = 0 in the vector of unknowns x is pursued by 
iteratively linearizing the original problem in a neighbourhood of a ten&v: 
approximate solution and solving the linearized problem for a new approximate 
solution until a satisfactory approximation is attained. The process may be 
represented schematically as follows: 

ALGQRITHM A (Newton iteration). 

given equation NL(x) = 0 and L linearization (differential j of NL, 

solve NL(x,) + L(6x) = 0 for 6x, 

Iterate x,, + i = x,, - L-‘[NL(x,)]. 

The difficult part in Newton iteration is the inversion of the linear operator L 
(i.e., a matrix). If direct (Gauss) inversion is to be used for this purpose the very 
satisfactory convergence rate of Newton iteration, which is quadratic, Le. charac- 
terized by an error asymptotically going down with iteration number :I as 
exp( -2”): is more than offset by the computation time of matrix inversion, which 
increases with the number of unknowns N as IV’. and by the storage, proportional 
to N’, necessary for the matrix elements. When the form of the matrix L does not 
lend itself to a method less time- and storage-consuming than Gauss inversion, 
Newton iteration is not to be preferred to other iterative techniques. 

However, there is a way to recover some of the nice convergence properties oi 
Newton iteration without losing the iteration speed of other methods: to replace 5 
by an approximation L’ which is amenable to a faster inversion. The restilticg 
algorithm may be called imperfect Newton iteration: 

ALGORITHM I3 (Imperfect Newton iteration 1. 

given equation NL(x) = 0, L linearization (differential) of NL and L’ easy i:o 
invert approximation of L, 

SOlVi? NL(x,,) + L’(ik j = 0 for 6x, 

iterate x,, L I =x,,-L’-‘[NL(x,,)]. 

It is clear that iVL(x,,) = 0 when x,, + , = x,, so that if the iteration converges the 
problem will have been solved; on the other hand, it cannot be guaranteed, as i% 
can under some restrictions for true Newton iteration, that the process Aa!/ con- 
verge provided the initial guess is close enough to the solution. nor is convergence 
quadratic. Nevertheless it is reasonable to expect if L’ is in some sense close to i 
that the process will converge quickly, and practice confirms this expectation. 
(More precisely, the theoretical condition under which the iteration can be shown 
to converge is that the matrix 1 - L’-lL should have all eigenvalues less than lmily 
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in modulus; however, for a practical problem such as the Navier-Stokes equations 
it is difficult to verify this condition other than by observing the convergence of the 
algorithm itself.) 

Although quicker than Algorithm A, Algorithm B is still formulated in terms of 
matrices. One can dispense with matrices completely by replacing L’ by a finite dif- 
ference of an operator NL’, of which L’ is the differential. This further modification 
gives 

ALGORITHM C (Modified imperfect Newton iteration). 

given equation NL(x) = 0 and NL’, easy to invert nonlinear operator such 
that its differential is an approximation of the differential of NL, 

solve NL( x,) + NL’( x,, + 6x) - NL’(x,, j = 0 for 6x, 

iterate x, + 1 = NL’-‘[NL’(x,,)- NL(x,)]. 

Again, it is evident from Algorithm C that NL(x,, j = 0 if x, +, = x,. Moreover, 
Algorithm C can be expected to have similar convergence properties to 
Algorithm B, but no matrix appears any longer. 

Those familiar with either of the techniques of deferred correction and multigrid 
will have recognized the above reasoning, as it is used in both. 

To obtain deferred correction, just identify NL with a high-order discretization of 
a given differential problem and NL’ with a low-order discretization of the same 
problem. Provided a fast solution procedure exists for NL’, Algorithm C allows that 
same procedure to be used for the solution of NL, by putting on the r.h.s. of NL’, 
rather than zero, the “deferred correction” NL’( x,,) - NL(x,, j. Notice that, on 
looking at Algorithm C alone, it is not at all apparent that such a process should 
converge. It is only through its relation to Algorithm B and the fact that NL and 
NL’, being different discretizations of the same problem, are expected to have 
mutually close differentials, that Algorithm C may be justified. 

To obtain multigrid, choose NL to be a fine-grid discretization of the given dif- 
ferential problem and NL’ to be a discretization of the same problem on a coarser 
grid. The foregoing reasoning may be repeated and Algorithm C allows a fine-grid 
solution to be obtained using an inversion algorithm that works on the coarser 
grid. Contrary to the previous case, however, care must be taken of the fact that 
the coarser grid contains less information than the finer one, namely it is only able 
to represent a shorter range of wavenumbers, by providing a separate procedure 
(smoother) to handle the higher-wavenumber portion of the error. Fortunately 
almost any relaxation algorithm has the property of dealing with high-wavenumber 
error components much better than with low-wavenumber ones. Suitable restriction 
and prolongation procedures must also be provided to move the low-wavenumber 
part only of the solution and error between grids. 
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3, DEFERRED-CORRECTION ~~LJLTIGRID 

Deferred correction is used often in connection with the Navier-Stokes equations. 
In fact, whereas several relaxation algorithms are known which work for an 
upwinded, first-order discretization of these equations, these algorithms generally 
%I when applied to a second- or higher-order discretization of the same equations, 
and in particular to the standard conservative central i-i discretization we shaC 
use as an example later. 

However. first-order upwinded convection terms are known to produce poor, 
and in some cases outright wrong [S], results in the very range of large mesh 
Reynolds numbers for which they are necessary and therefore are not considered a 
satisfactory solution. There are two ways out of this difficulty: to use specially 
designed higher-order upwind discretizations, as for instance in [61, or to make ir 
such that the properties of upwinded differences are exploited during the iterative 
process but the finai converged solution satisfies a higher-order approximation! of 
the differential equations, e.g., by using upstream-weighted difference schemes 
[7. S] or deferred correction. 

in connection with deferred correction, it should be noticed that Algorithm C as 
written above involves the exact inversion of the approximate problem ?JL’ at each 
iteration step. While in an iterative context it is reasonable to repiace this exact 
inversion by an approximate one, such as may be provided by one or more itera- 
tions of a relaxation algorithm, it is necessary, for Algorithm C to resemble Newton 
ireration, that this approximation be sufficiently good. In particular, it is known 
that deferred correction of the upwind to the central-difference approximation of 
the $-i Navier-Stokes equations, or, for that matter, even of the advection-di%- 
sion equation, does not yield a stable iteration loop if simple point-Gauss-52 
relaxation is used in the place of NL’-‘. On the other hand, this technique has been 
applied with success in conjunction with line relaxation and PtDI algorithms 
is-1 11. 

Since an accurate and fast approximate inversion of NL’ is necessary, and given 
the conceptual relationship between deferred-correcaion and multigrid techniql;:s 
indicated in the previous section, it becomes very natitral to roll deferred correction 
and multigrid into a single combined algorithm, as was proposed in gene& in 
[l., 21 and applied to the Euler equations in [3,4]. 

A deferred-correction multigrid (DCMG) procedure may 5e viewed i3; ;wc 
complementary ways: as a deferred-correction algorithm which uses a mtiltigrid 
iteration as the approximate inversion of NL’, or as a multigrid algorithm that uses 
a higher-order discretization rather than an even finer grid to calculate correctIon 
terms for the finest-grid equations, similar to those which are added to coarser-grid 
equations in order to comply with imperfect Newton iteration (,t2lgorithar, C i. Hn 
nseudacode. the outmost loop of a DCMG program is 
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ALGORITHM DCMG (Deferred-correction multigrid). 

repeat 
apply low-order smoother on the finest grid 
restrict solution and residuals to the next coarser grid 
calculate correction terms for the coarser grid (difference between coarsc- 
grid and fine-grid residuals) 
apply low-order smoother 
restrict solution and residuals to the next coarser grid 
. . . . 
prolong the solution difference to the next finer grid 
apply low-order smoother 
prolong the solution difference to the finest grid 
apply low-order smoother 
calculate correction terms for the finest grid (difference between low-order 
and high-order residuals) 

until high-order residuals satisfactorily small. 

As is seen, a DCMG code requires a standard multigrid procedure, composed of 
a sequencer to handle the cascade of grids, restriction and prolongation routines, 
and a smoother written for the low-order equations, with the addition of a 
residual-calculating routine for the high-order equations which is invoked once per 
multigrid iteration to provide deferred-correction terms. 

One unique asset of the DCMG approach is the flexibility ensuing from the 
almost complete segregation of the functions of providing accuracy and speed of 
execution into different program modules. In particular, whereas the relaxation pro- 
cedure for the low-order equations (the smoother) is the most frequently executed 
piece of code and should be kept as simple as possible, the high-order equations, 
in spite of being the very ones which are being solved, are used sparingly in the 
calculation, their residuals needing only to be computed once per multigrid 
iteration. Of course, this is quite consistent with the Newton iteration procedure, 
in which residuals are only calculated once per matrix inversion, but it is a big 
departure from other existing algorithms and opens some new possibilities. 

In particular, a DCMG program is a sort of “black box” into which different 
discretizations of the same problem may be quickly plugged in and tried out. This 
capability, precious for problems in which the accuracy of one or another dis- 
cretization method is questionable, is not shared by any other differential-equation 
solution algorithm. 

Moreover, the use of approximations of a high order is particularly convenient, 
even in cases where it leads to complicated difference equations, because these 
difference equations are only used moderately often for computing their residuals 
and have little effect on the overall computation time. In fact, it would be quite 
conceivable to adopt a DCMG algorithm to solve finite-element equations, thus 
providing a much faster alternative to the traditional direct-matrix-inversion 
methods. 
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Let us finally remark that the deferred-correction and multigrid algorithms have 
already appeared together in NavierStokes solving programs in the past [‘i&14], 
but with a very different approach. In those works a complete implicit 
Navier-Stokes solver, previously developed by the same QT other authors ES a 
stand-alone program, which happened to exploit also the deferred-correction 
technique, was inserted in a multigrid cycle for the purpose of gaining an improved 
rate of convergence. In DCMG, instead, deferred correction is used outside, and in 
some sense towards completion, of the multigrid cycle for the purpose of solving a 
high-order difference formulation of a differential problem by adopting a vesy 
simple relaxation algorithm, which would be of no use as a stand-alone unit. as a 
smoother for the multigrid procedure. A smoother with these properties will be 
presented in the next section. 

A DCMG program for the Navier-Stokes equations with a structure very similar 
to the present one. but working with primitive-variable equations and using a 

ifferent smoother. has appeared very recently [ 1]. 

4. 14 NEW EXPLICIT SMOOTHER FOR THE NAVIER-STOKES EQUATIONS 

A relaxation algorithm that is useful as a smoother must have the property of 
damping large-wavenumber error components (those having a wavelength com- 
parable to mesh size), but it is not very important how it behaves with respect to 
low-wavenumber components, as those are taken care of by a different part of the 
multigrid program. In addition, a smoother ought to be simple and fast, because it 
is the most frequently executed piece of code. For these reasons it is generally f~ound 
in connection with simple elliptic problems (s-uch as the ones governed by the 
iaplace, Poisson, and biharmonic equations) that an explicit point-Gauss&&de1 
smoother is preferable to more complicated line-relaxation or ADI methods [16, 
Sect. 3.31, because the large-wavenumber properties of the latter are not enough 
superior to those of the former to compensate for the increased computation time 
per iteration. 

elaxation algorithms for the Navier-Stokes equations, however, are not as nice, 
and in particular, no explicit Gauss-Seidel procedure for the two-dimensional 
Navier-Stokes equations in I,+-< form seems to have been found to converge at 
relatively large Reynolds numbers (by which we mean Iarge enough that the 
Reynolds number based on mesh size is larger than unity but not so large that the 
differential equations themselves are unstable) without the introduction of inpracti- 
cal underrelaxation factors: in fact, even line-relaxation procedures, which are 
currently the preferred solution either in their ADI or line-Gauss-Seidel variation 
(see, e.g., ES-1 1, 17, 181) converge only for the difference equations containing the 
convective terms in upwinded form, which is a way of restoring a sort of diagonal 
dominance into the derivative matrix. and, even so, often require the introduction 

underrelaxation factors which must be given different values for di 
ynolds numbers, 
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In this section we shall see how trying to understand the reason for the necessity 
of these underrelaxation factors leads to the development of a stable point- 
Gauss-Seidel smoother. 

The two-dimensional, steady, incompressible Navier-Stokes equations in I+-[ 
form are 

A2$=1: (la) 

JzC = W$,.i,- $.d,J, (lb) 

where @ and i denote the stream function and vorticity of the flow field and Re is 
the Reynolds number. Two very common discretizations of these equations on a 
“cross” formed by live points, which we shall denote by subscripts E, N, W, S, and 
C for east, north, west, south, and center, respectively, are the second-order form 
given by 

k+h+IC/w+tk-4k=hZic Pa) 

iE + CN + iw + is -4k = Re(ti,,i,, - tidd4, (2b) 

where all first derivatives are approximated by central differences, and the tirst- 
order upwind form given by Eq. (2a) together with 

=ReCih- I~~sl)i~c+(I1/~s+I~~sl)iycw 

+ ($EW + I+Ewl) iiw - ($,w - IhA) id47 (31 

where symbols with two subscripts denote differences of the corresponding values 
(e.g., $Ns = tjN - 9s). In the above equations 12 denotes mesh size, which is assumed 
constant for the sake of simplicity even though all that we are going to say can 
easily be extended to variable-spacing meshes. The reason why Eq. (3) is introduced 
at all is that Eq. (2b), although more precise, is not fit for relaxation algorithms 
because the value of vorticity at the central point cc does not appear in the convective 
term (the right-hand side). 

The function of the smoother in a multigrid algorithm is mainly to damp short- 
wavelength components of the error, and its long-wavelength behaviour does not 
really matter. This makes simple explicit smoothers preferable to implicit ones, 
because the larger computation time that the latter require is not sufficiently com- 
pensated for by the marginal improvement they offer in short-wavelength damping 
(It is at long wavelengths that implicit algorithms really outperform explicit ones). 
Another nonnegligible point in favour of choosing an explicit smoother is that the 
smoother is the most frequently executed piece of code, and if it is a very simple 
routine a considerable speed advantage can be obtained by optimizing its coding, 
for instance, by means of an assembler, whereas such a measure is too costly in 
programming time for a complicated routine. An explicit smoother is also much 
better fit for parallel processing. 
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Despite these considerations, the multigrid programs for the Navier-Stokes equa- 
tions (I) that can be found in the literature (e.g., j12-14, 191) utilize imphcit 
smoothers. Th.e reason is that explicit Gauss-Seidel relaxation methods for these 
equations, even in upwinded form, do not converge at relativeiy high Reynolds 
numbers. (An explicit smoother for the upwinded XavierStokes equations in 
primitive variables has been introduced in [20] under the name of distributive 
CausssSeidel (DGS) technique for the purpose of being used in a multigrid algo 
rithm and has been later adopted in [21, 221. It is, however, reported to diverge in 
some cases.) In fact, even implicit smoothers for the upwind equations are generally 
reported [6, 12-14, 191 to require a certain amount of overrelaxation of the con- 
tinuity equation (2a) and underrelaxation of the vorticity equation (3 ) in order to 
avoid instability, which gives us a clue to what is wrong with standard upwinding. 

The consideration that upwinding restores diagonal dominance !into the 
derivative matrix: as set forth, e.g., in [9] and in Appendix A of [ 13]* is true only 
If in the vorticity-transport equation vorticity only is treased as an unknown, with 
a known stream-function field. This is exactly the condition that the combination 
of overrelaxation and underrelaxation adopted in [6, 12-14, 191 tends to estabhst, 
giving a faster smoothing rate to the stream function than to rhe vorticity. much as 
though the continuity equation were solved exactly for the stream function for acy 
one iteration of the vorticity distribution. (A more efficient way to achieve the same 
aim wou!.d probably be to perform a larger number of relaxation sweeps on ths 
continuity equation than on the vorticity equation, rather than underrelaxing the 
latter.) 

We are going to pursue a different approach: to seek a formulation of the dif- 
ference equations that takes explicitly into account that vorticiey and stream func- 
tion are to be relaxed simultaneously (any first-order formulation of the equations 
may be chosen as the basis for a smoother in the DCMG context, since this choice 
has no bearing on the accuracy of the solution obtained). In particular, i: may be 
observed that if upwind differences are used for vorticity In the convective terms but 
central ditferences are retained for stream function, as is done in the classica! for- 
mulation of Eq. (3 ), the value of stream function at the central point $c does no: 
appear in t e vorticiry equation and is necessarily determined by the ccntimuity 
equation only; if, on the other hand, lateral differences (not necessarily in the 
upwind direction) are used for the derivatives of stream function as well. the value 
of stream function at the central point acquires a considerable dnfluence in the ‘<or- 
ticity-transport equation and this influence must be accounted for In the relaxarion 
algorithm. The safest way to take this influence into account in a GaussSeidei-type 
algorithm is to solve the two equations for the central values of \1, and ; 
simultaneously. A close look at what happens in doing so will also reveal ths 
appropriate choice of the sides from which $-derivatives should be taken 

Let us first of all consider the linearized form of Eqs. i 1 t5 since it is this form 
which determmes the properties of the algorithm even if it does not appear 
explicitly in the deferred-correction formulation. We may write a five-no%: 
fi.rst-order difference equation system for this linearized problem as 
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where superscripts (0) and (1) denote base values and corrections, R,,,, and R,,,, 
are the residuals of the continuity and vorticity-transport equations, which may 
include the constant correction terms needed for the multigrid and/or deferred- 
correction processes, and in Eq. (4b) Cl may stand for either cw or iE, ti2 for either 
$s or tiN, c3 for either is or cN, and $4 for either tiw or $E, and the multipliers 
SI> s2, s3, and sq equal + 1 or -1 depending on whether the first or the second 
alternative is chosen in each case. It is not necessary for the present purpose to 
specify exactly how derivatives Ii/j?‘, ii”‘, Ic/.\“‘, and [j!’ are discretized. Inverting 
Eqs. (4) with respect to $2’ and [p’ gives 

tip’= (a,b, -h2b,)/D (5a) 

[p’= (4b2-a,b,)/D, (5b) 

where 

(64 

(6b) 

Va) 

+~~~~‘i:l’)+~~i:P)~:l))+R,,,,~ 

D = 4a2 - h*a, 

VJj 

= 16 +-4h Re(s,$j”’ - s,$p’) - h3 Re(s,<L” - s,[lp’). (8) 

Equation (8) is enlightening as to the problem of “upwinding” $-derivatives. The 
equivalent of pursuing diagonal dominance, in our approach in which two 
unknowns are recalculated at once, is to make the determinant D as large as 
possible, so that recalculating $C and cc involves the least correction. This means 
choosing multipliers S, , s2, s3, and sq, and indirectly the directions of cl, Gr, i3, 
and $j which are tied to those, so that the terms s,$-t!‘), -s,~$“, -s,tjlp’, and 
sqiCo) of Eq. (8 j are all positive. For the two i-derivatives the result is classical 
up;inding, i.e., the side from which they should be taken is determined by the sign 
of the $-derivatives; for the two $-derivatives we obtain the new result that, sym- 
metrically, the side from which they should be taken is determined by the sign of 
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the i-derivatives. Notice that it is not correct to take G-derivatives from the same 
side from which i-derivatives are taken; in fact such a solution, which we anyhow 
tried out of curiosity, does not produce an algorithm any better than u~w~~d~~g 
c-derivatives only does. 

?t remains to be seen which full nonlinear difference approximation of Eqs. (1) 
has Eqs. (4) as its linearized version. The obvious answer is to replace each 
derivative by a suitable difference expression, choosing for all first derivatives laierai 
differences taken from a side conforming to the above criteria. There are: however, 
two drawbacks to doing so: one is that the signs of the $ and < differences deter- 
mine the choice of the side from which each other should be taken, but the signs 
themselves may in turn depend on this choice, causing nontrivial programming 
problems; the other is that the resulting equation system is quadratic with respect 
to the unknowns $o and cc (although not for all combinations of signs), and its 
exact resolution involves a square root which is slow in execution. However, there 
is not only one nonlinear equation corresponding to a given linearized form. 
A computationally more efficient solution is furnished by the difference equation 

As may be seen, in the r.h.s. of Eq. (9) the convective term is added twice and sub- 
tracted once and is written the first time with upwinded i-derivatives, the second 
time with “upwinded” $-derivatives (in the sense of the above discussion), and 
the third time with all central differences. The net result is that Eq. (lb) is 
approximated to first order, the system formed by Eqs. (2a) and (9) is haear in lclc 
and Cc and has the same coefficients as Eqs. (4) and all the calculations are 
straightforward. 

To finish this section, a few words must be spent on the ordering of recalculation 
of the Gauss-Seidel cycle. Any Gauss-Seidel algorithm, since values are put back 
as soon as they are recalculated, is sensitive to the order in which data points are 
traversed. Sometimes a linear order in which rows of points are scanned in strict 
succession is chosen just because it is the easiest to program. Five-point difierence 
equations like the ones dealt with in the foregoing, however, also allow a different 
choice which in a multigrid context is more than vdorth the, slight indeed, extra 
programming effort: the “hopscotch” ordering of Sheldon 1231 and Gourlay i&I] 
(now more often called “red-black” ordering), whick is like alternately recalculating 
points corresponding to the black and red squares of a chequerboard. Since each 
“‘red” point is surrounded by four “black” points and vice versa, it is always 
possible to explicitly recalculate the variables pertaining to any single point of one 
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“colour” from those of the other. Each relaxation sweep is composed of two phases, 
one in which all the “black” points are calculated from the “red” ones and one in 
which the “red” points are recalculated from the “black.” Notice that knowledge of 
the solution at only half the points (i.e., either the black or the red) is sufficient to 
reconstruct the other half exactly. 

The hopscotch method has the particular merit, in a multigrid context, of not 
introducing disuniformities in the spatial distribution of residuals. In fact a 
Gauss-Seidel algorithm necessarily leaves the points which have been recalculated 
last in a different condition from those less recently recalculated (thinking of the 
iteration number as a continuous time variable, one could say that the former 
points are a fraction of a step ahead of the latter) thus giving rise to perturbations 
in the distribution of residuals which must be filtered out by the interpolation 
algorithms used to pass from one grid to the next coarser or liner. Instead, in a 
hopscotch algorithm there is a definite difference (of half a step in a certain sense) 
between “black” and “red” points, but each of these two classes is homogeneous, 
since all of its members are recalculated using only information coming from the 
other class. Now, in a multigrid scheme in which mesh size is doubled from one 
level to the next, all the points belonging to the coarser mesh happen to be of the 
same “colour” on the finer one, and therefore their residuals may be transferred to 
the coarser mesh by simple injection with no fear of dangerous short-wavelength 
disuniformities caused by the relaxation sweep. In fact, as also pointed out in [2], 
injection is particularly well suited to red-black smoothers, provided a factor of i 
is applied to the line-mesh residuals before subtracting them from the coarse-mesh 
residuals to account for the fact that two iteration steps are effectively performed in 
going from the black to the red and back to the black points; even the theoretical 
disadvantages of injection can be circumvented by considering injection as a live- 
point restriction with weights of $ for the center and $ for the end points, which is 
possible since when a red-to-black sweep has just been performed (assuming the 
center is red) black residuals are zero. When going back from the coarser to 
the finer mesh, corrections for the points falling exactly in between two points of the 
coarser mesh will be calculated (by linear interpolation) as the average of the 
corrections obtained for the two enclosing points. which are always one “red” and 
the other “black”; corrections for the other points need not be calculated at all, 
since the full values of the variables pertaining to these points will be calculated 
directly from the previous ones in the following hopscotch sweep. Again a 
homogeneous situation is obtained, thus avoiding the introduction of spurious 
short-wavelength error components. 

5. APPLICATION TO DRIVEN-CAVITY FLOW 

As a test for the algorithm we programmed the resolution of the second-order 
conservative finite-difference form of the Navier-Stokes equations for the driven- 
cavity problem, on which a vast literature is available (e.g., [12-14, 22]), using 
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both constant- and variable-spacing meshes. The difference equations used are 
Eq. (2a) and 

where $gE, li/J.w- kyN, and $xS denote central-difference approximations of 
derivatives about the corresponding points. Notice that the conservative form ! IO) 
of the vorticity-transport equation uses nine rather than five points, but this is no 
problem because this equation is only used in the deferred-correction phase. @or the 
tangential-velocity boundary condition we used the standard Thorn [25, Sect. III- 
C-2] difference formula in the smoother and the Woods [26] third-order accurate 
formula, which also contains the value of vorticity at the point next to wall, in the 
deferred correction. In the variable-spacing runs a one-dimensional stretching trans- 
formation was applied independently to either coordinate, similar to that in Ci3]. 
A fixed number of smoother sweeps were performed at each multigrid level: on 
trying different numbers of sweeps it was found best to perform six sweeps per ievei 
when going upwards from finer to coarser Ievels and three sweeps per level when 
going downwards from coarser to finer. 

Figures l-4 report the streamline patterns obtained for Re = I, 100, 1300, and 
5000 using a 65 x 65 point uniform grid in the first three cases and an 89 x 89 point 
stretched grid in the last one. These are, of course: not different from those 
presented by other authors, since the same difference equations have been solved at 
convergence, and will not be discussed in detail. More interesting are Figs. 5-8, 
which show the convergence history of the algorithm for the same four cases, giving 
the maximum absolute values of the residuals of the continuity and vortici:y- 
transport equations, on a logarithmic scale, as functions of run time in work units, 
nine work units corresponding to a full multigrid cycle (one work unit per 
hopscotch sweep at the finest level). It will be noticed that, just as happens for ali 
the other Navier-Stokes solving programs, the residual-damping rate deteriorates 
with increasing Reynolds number. This rate, however, may be seen from Figs. 5 aad 
6 to be independent of mesh size, as is characteristic of a multigrid algorithm. (The 
calculation with 33 x 33 points was not performed in the other two cases beca?tse 
this number of points is insufficient at the higher eynolds numbers 
the damping rate compares favourably with the data reported for 
Fig. 1 of [la] and in Fig. 4 of [ 131, which were obtained from a multigri 
utilizing an implicit smoother, once account is taken of the fact that their work unit 
corresponds to one line-relaxation sweep and a line-relaxation sweep may take from. 
2 to 4 times as long to execute as an explicit Gauss-Seidel sweep (we cannot be 
very precise on this number because the two programs have not been run on the 
same computer). 

It must also be noted that the present DCMG algorithm converges starting from 
a zero initial guess, although a somewhat better time can be obtained at the higher 
Reynolds numbers by using a solution for a lower Reynolds number as a starting 
point. In particular, the convergence histories reported in Figs 5-7 were obtained 
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FIG. 1. Streamline pattern of driven-cavity flow at Re = 1 calculated on a 65 x65-point uniform 
mesh. 

FIG. 2. Streamline pattern of driven-cavity flow at Re = 100 calculated on a 65 x 65-point uniform 
mesh. 
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FIG. 3. Streamline pattern of driven-cavity flo\c at Re = 1000 calcubed on a 65 x @-point uniform 
mesh. For the sake of clarity. streamline spacing in the corner vortices ar?.d in the main fiow has been 
chosen diffrrently, 

FIG. 4. Streamline pattern of driven-cavity flow at Re = X00 caictiiated oc an 89 x89-p&1: 
stretched mesh. Streamline spacings in the corner vortices and in the mai? 9ow are diKerer?t. 
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0 Work Units 150 

FIG. 5. Convergence history of the calculations performed at Re = 1 on 65 x 65 and 33 x 33-point 
uniform grids. R, and R; stand for the maximum-absolute-value residuals of the $- and (‘-equations, 
respectively. 

starting from zero. It may be noticed that for Re = 1000 convergence is slower in 
the beginning part and then speeds up once a close enough approximation has been 
attained, so that indeed a better time would have been achieved if the calculation 
had been started from a previous solution at a lower Reynolds number. This has 
been done in the last case, Re = 5000 reported in Fig. 8, where the first rapidly 
oscillating part refers to the calculation initially performed by periodically 
increasing the Reynolds number and the regular part refers to the time when the 

103 

_- 
0 Work Units 250 

FIG. 6. Convergence history of the calculations performed at Re = 100 on 65 x 65 and 33 x 33-point 
uniform grids. 
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‘2 Work Units aoo 

FIG. 7. Convergence history of the calculation performed at Re = 1QOZ on a 65 x 65-point uniform 
grid. 

Reynolds number was eventually settled at 5000. Even in this case, however, the 
solution does converge starting from zero, although very slowly. 

Finally, Figs. 9 and 10 report the streamline patterns obtained at Re = 1000 for 
the smoother alone, with no deferred correction, and the standard upwind vorticity 
equation (3). (The latter was obtained by simply substituting E (3) for Eq. (10) ir. 
the deferred-correction procedure.) Observing how different bo of these diagrams 
are from Fig. 3 gives a further confirmation, if one is necessary, of the inadequacy 
of first-order difference approximations for the resolution QE Navier-Stokes 
problems. 

10-4 I I I 
0 Work Units 403 

FIG. 8. Convergence history of the calculation performed at Re = XKKI on an 89 x 89 point stretched 
grid. 
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FIG. 9. Streamline pattern obtained at Re = 1000 on a 65 x 65 point mesh 
smoother equations with no deferred correction added. 

from the first-order 

FIG. 10. Streamline pattern obtained at Re = 1000 on a 65 x 65 point grid for the standard upwind 
first-order discretization. 
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6. CONCLUSIONS 

Bringing together the techniques of multigrid and deferred correction, through 
their common relationship with imperfect Newton iteration. yields an algorithm 
which combines the ease of calculation of a low-order smoother with the accuracy 
of a high-order difference approximation. A DCMG algorithm takes two difference 
formulations of the same problem, one accurate but difficult to cope with and 
another low-order but such that an easy and fast relaxation method is available, 
and by an imperfect Newton iteration process manages to sotve the high-order 
equations using a smoother developed for the low-order ones. 

The peculiarity of the DCMG algorithm is that, although the high-order 
equations are eventually solved, they appear only in a single residual-caiculat~~g 
routine which is executed once per multigrid cycle. There are two consequences: Ihe 
execution speed of the algorithm is very little influenced by the complexity of the 
difference equations, so that high-order approximations are particularly convenient: 
and it is quite easy to test different approximations by simply writing rhe relevant 
equations in that single procedure. 

Ar, explicit smoother has been presented for rhe I)-; Wavier-Stokes equatiom 
which uses an appropriate kind of “upwinding” of $-derivatives in the vortiaity- 
transport equation to achieve stability at relatively high Reynolds numbers. This 
smoother is simple and particularly well suited to the multigrid environment, and 
it contains no parameters, such as overrelaxation or underrelaxation factors, that 
must be adjusted to different values for different Reynolds numbers. The hopscotch 
ordering of the Gauss-Seidel relaxation procedure ensures ihat no spurious 
disuniformities of the residual distribution are introduced, thus allowing simpler 
interpolation formulae to be used for passing data from one to the next mdttgrid 
lW& 

In the application to driven-cavity flow the DCMG algorithm has proven to 
yield consistent results at all Reynolds numbers up to 5000. Smce DCMG also has 
a relatively simple program structure. it may be considered a general-purpose 
Navier-Stokes solver. 

Future applications of this method may include the study of higher than second- 
order formulations of the Navier-Stokes equations and rhe fast resolution of fin&- 
element formulations, in addition to the resolution of other differential problems, of 
a physical nature unrelated to the Navier-Stokes equations, that have the common 
characteristic that a low-order difference approximation is unreliable but a higher- 
order one is hard to solve. 
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